

VUEBOX® RESEARCH - QUICK GUIDE

Get started with VueBox® Research effortlessly with our quick guide, outlining fundamental workflow steps.

INDEX

Ι.	Tissue Perfusion - Bolus analysis	. 1
	Tissue Perfusion – Replenishment analysis	
III.	Tissue Normalization, Dynamic Vascular Pattern Analysis	4
IV.	Low-Intensity Signal analysis	5
V.	Parameter Trend tool	. 6

I. TISSUE PERFUSION - BOLUS ANALYSIS

USE THIS FEATURE TO: ANALYSE PERFUSION PARAMETERS IN A WASH-IN / WASH-OUT KINETICS

OUTPUT:

PE	Peak Enhancement
WiAUC	Area Under the Curve (Wash-in)
RT	Rise Time
mTTI	mean Transit Time (local)
ТТР	Time To Peak
WiR	Wash-in Rate
WiPI	Wash-in Perfusion Index (WiAUC/RT)
WoAUC	Wash-out AUC
WiWoAUC	Wash-in and Wash-out AUC
FT	Fall Time
WoR	Wash-out Rate

- 1. Open a Bolus clip in Tissue Perfusion package.
- 2. Adjust the linearization settings in the **Video Settings** panel.
- 3. Choose the **Bolus** perfusion model in the perfusion models tab.
- 4. Define the images to be excluded using the **Clip editor**.
- 5. Draw Delimitation ROI delimiting the processing area
- 6. Draw multiple ROI successively as desired.
- 7. Move the **Image slider** to choose a reference image for motion compensation.
- 8. Click the button to launch the **Motion compensation**.
- 9. Review the motion compensated clip using the Image slider.
- 10. If the **Motion compensation** is unsuccessful, try one of the following:
- 11. Select another reference image and click the button again to re-apply **Motion** compensation.
- 12. Click the button to return to the **Clip editor** and exclude any images thought to be degrading the result of motion correction, such as out of plane movements, and then re-apply **Motion compensation**.
- 13. Once satisfied with motion compensation, click the button to launch the **Perfusion Data Processing**.
- 14. Accept or select another instant in the Contrast arrival detection dialog box.
- 15. If needed, adjust the **Gain** and **Dynamic range** sliders for each parametric image or check **Apply preset** to apply the user preferences.
 - 16. Click the button to export data
 - 17. Click the 🖬 button to store the context.

II. TISSUE PERFUSION – REPLENISHMENT ANALYSIS

USE THIS FEATURE TO: ANALYSE PERFUSION PARAMETERS IN A REPLENISHMENT KINETICS AFTER BUBBLE DISTRUCTION (INFUSION)

OUTPUT:

rBV	relative Blood Volume
WiR	Wash-in Rate
mTT	mean Transit Time
PI	Perfusion Index (rBV / mTT)

- 1. Open a Replenishment clip in Tissue Perfusion package.
- 2. Adjust the linearization settings in the **Video Settings** panel.
- 3. Wait for the **flash detection** to be completed. If necessary, set flash images manually by using the button or the "F" keyboard key.
- 4. Choose the **Replenishment** perfusion model in the perfusion models tab.
- 5. If multiple segments are present, select the replenishment segment to be analyzed with arrow buttons (**).
- 6. Draw Delimitation ROI delimiting the processing area
- 7. Draw multiple ROI successively as desired.
- 8. Move the **Image slider** to choose a reference image for motion correction.
- 9. Click the button.
- 10. Review the motion compensated clip using the Image slider.
- 11. If the **Motion compensation** is unsuccessful, try one of the following:
- 12. Select another reference image and click the button again to re-apply **Motion** compensation.
- 13. Click the button to return to the **Clip editor** and exclude any images thought to be degrading the result of motion correction, such as out of plane movements, and then re-apply **Motion compensation**.
- 14. Once satisfied with motion compensation, click the button to launch the **Perfusion Data Processing**.
- 15. If needed, adjust the **Gain** and **Dynamic range** sliders for each parametric image or check **Apply preset** to apply the user preferences.
- 16. Click the button to export data.
- 17. Click the 🔚 button to store the context.

III. TISSUE NORMALIZATION, DYNAMIC VASCULAR PATTERN ANALYSIS

USE THIS FEATURE TO: HIGHLIGHT HOW THE CONTRAST AGENT IS BEING DISTRIBUTED IN A SPECIFIC AREA COMPARED WITH THE SURROUNDING TISSUE

OUTPUT:

DVP	Dynamic Vascular Pattern
DVPP	Dynamic Vascular Pattern Parameter (DVPP) – Parametric image

- 1. Open a Bolus clip in Tissue Normalization package.
- 2. Adjust the linearization settings in the **Video Settings** panel.
- 3. Define the images to be excluded using the **Clip editor**.
- 4. Draw Delimitation ROI delimiting the processing area
- 5. Draw Tissue 1 and Reference ROI successively.
- 6. As desired, additional Tissue 2 and Tissue 3 ROI can be drawn (see section **Error! Reference source not found.**).
- 7. Move the **Image slider** to choose a reference image for motion compensation.
- 8. Click the button to launch the motion compensation.
- 9. Review the motion compensated clip using the Image slider.
- 10. If the **Motion compensation** is unsuccessful, try one of the following:
- 11. Select another reference image and click the button again to re-apply **Motion** compensation.
- 12. Click the button to return to the **Clip editor** and exclude any images thought to be degrading the result of motion correction, such as out of plane movements, and then re-apply **Motion compensation**.
- 13. Once satisfied with motion compensation, click the button to launch the **Perfusion Data Processing**.
- 14. Accept or select another instant in the Contrast arrival detection dialog box.
- 15. If needed, adjust the **Gain** and **Dynamic range** sliders for each parametric image or check **Apply preset** to apply the user preferences.
- 16. Click the button to export data
- 17. Click the button to store the context.

IV. LOW-INTENSITY SIGNAL ANALYSIS

USE THIS FEATURE TO: DEPICT MAXIMUM INTENSITY PROJECTION OF A LOW-INTENSITY SIGNAL IN A ROI IN A HIGH-INTENSITY BACKGROUND.

OUTPUT:

PA	Perfused Area
rPA	Relative Perfused Area

- 1. Open a clip in Low-Intensity Signal package.
- 2. Adjust the linearization settings in the **Video Settings** panel.
- 3. Draw **Delimitation ROI** delimiting the processing area
- 4. Draw a Low Intensity Region (**LIR**) delimiting the area with low-intensity contrast signal
- 5. Draw a High Intensity Region (**HIR**) delimiting a small reference area with high-intensity contrast signal
- 6. As desired, other optional LIRs can be drawn
- 7. Move the **Image slider** to choose a reference image for motion compensation.
- 8. Click the button to launch the motion compensation.
- 9. Review the motion compensated clip using the **Image slider.**
- 10. click the button to launch the **Data Processing**.
- 11. Adjust the baseline and perfusion segments location in the **Frame Segments Detection** dialog box if needed.
- 12. Click the button to export data
- 13. Click the last button to store the context.

V. PARAMETER TREND TOOL

USE THIS FEATURE TO: COMPARE PERFUSION PARAMETERS VALUES ACROSS DIFFERENT EXAMINATIONS OF THE SAME SUBJECT

OUTPUT:

GRAPH	Display of a perfusion parameter over time
	Relative change of a perfusion parameter

- 1. **Select the Vuebox® Research analyses** to include in the comparison
- 2. Start the analysis
- 3. Click the button to add a graph for a quantification parameter you want to study
- 4. Click again the button to add a graph to display the time intensity curves for all the analyses for one or more ROI
- 5. Click on button to save the parameter trend
- 6. **Configure the export parameters** and validate